Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Diagnostics (Basel) ; 11(10)2021 Oct 13.
Article in English | MEDLINE | ID: covidwho-1470806

ABSTRACT

As the COVID-19 pandemic continues to ravage the world, the use of chest X-ray (CXR) images as a complementary screening strategy to reverse transcription-polymerase chain reaction (RT-PCR) testing continues to grow owing to its routine clinical application to respiratory diseases. We performed extensive convolutional neural network (CNN) fine-tuning experiments and identified that models pretrained on larger out-of-domain datasets show an improved performance. This suggests that a priori knowledge of models from out-of-field training should also apply to X-ray images. With appropriate hyperparameters selection, we found that higher resolution images carry more clinical information, and the use of mixup in training improved the performance of the model. The experimental showed that our proposed transfer learning present state-of-the-art results. Furthermore, we evaluated the performance of our model with a small amount of downstream training data and found that the model still performed well in COVID-19 identification. We also explored the mechanism of model detection using a gradient-weighted class activation mapping (Grad-CAM) method for CXR imaging to interpret the detection of radiology images. The results helped us understand how the model detects COVID-19, which can be used to discover new visual features and assist radiologists in screening.

2.
Sci Rep ; 11(1): 14353, 2021 07 12.
Article in English | MEDLINE | ID: covidwho-1307346

ABSTRACT

COVID-19 has tremendously impacted patients and medical systems globally. Computed tomography images can effectively complement the reverse transcription-polymerase chain reaction testing. This study adopted a convolutional neural network for COVID-19 testing. We examined the performance of different pre-trained models on CT testing and identified that larger, out-of-field datasets boost the testing power of the models. This suggests that a priori knowledge of the models from out-of-field training is also applicable to CT images. The proposed transfer learning approach proves to be more successful than the current approaches described in literature. We believe that our approach has achieved the state-of-the-art performance in identification thus far. Based on experiments with randomly sampled training datasets, the results reveal a satisfactory performance by our model. We investigated the relevant visual characteristics of the CT images used by the model; these may assist clinical doctors in manual screening.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnostic imaging , Deep Learning , Tomography, X-Ray Computed , COVID-19/diagnosis , COVID-19/pathology , COVID-19/virology , Humans , Image Processing, Computer-Assisted , Neural Networks, Computer , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL